improve multiprocessing
This commit is contained in:
@@ -1,3 +1,4 @@
|
||||
import os
|
||||
from concurrent.futures import ProcessPoolExecutor, as_completed
|
||||
from dataclasses import dataclass
|
||||
|
||||
@@ -86,41 +87,46 @@ def run_simulation(n_servers=2, lam=40):
|
||||
}
|
||||
|
||||
|
||||
with ProcessPoolExecutor(max_workers=4) as executor:
|
||||
n_servers = [n + 1 for n in range(10)]
|
||||
lam = [(n + 1) * 4 for n in range(10)]
|
||||
parameter_values = [
|
||||
{"n_servers": n, "lam": m} for n in n_servers for m in lam for _ in range(10)
|
||||
]
|
||||
futures = [
|
||||
executor.submit(run_simulation, **parameters) for parameters in parameter_values
|
||||
]
|
||||
if __name__ == "__main__":
|
||||
with ProcessPoolExecutor(max_workers=os.cpu_count()) as executor:
|
||||
n_servers = [n + 1 for n in range(10)]
|
||||
lam = [(n + 1) * 4 for n in range(10)]
|
||||
parameter_values = [
|
||||
{"n_servers": n, "lam": m}
|
||||
for n in n_servers
|
||||
for m in lam
|
||||
for _ in range(100)
|
||||
]
|
||||
futures = [
|
||||
executor.submit(run_simulation, **parameters)
|
||||
for parameters in parameter_values
|
||||
]
|
||||
|
||||
results = []
|
||||
for future in tqdm(as_completed(futures), total=len(parameter_values)):
|
||||
result = future.result()
|
||||
results.append(result)
|
||||
results = []
|
||||
for future in tqdm(as_completed(futures), total=len(parameter_values)):
|
||||
result = future.result()
|
||||
results.append(result)
|
||||
|
||||
df = (
|
||||
pl.DataFrame(results)
|
||||
.fill_null(0)
|
||||
.group_by(["n_servers", "lam"])
|
||||
.agg(pl.all().mean())
|
||||
.sort(["n_servers", "lam"])
|
||||
)
|
||||
|
||||
df_queue_time = df.pivot("lam", index="n_servers", values="queue_time").sort(
|
||||
"n_servers"
|
||||
)
|
||||
|
||||
def stats(column):
|
||||
return (
|
||||
df.pivot("lam", index="n_servers", values=column)
|
||||
.sort("n_servers")
|
||||
.with_columns(pl.all().round(2))
|
||||
df = (
|
||||
pl.DataFrame(results)
|
||||
.fill_null(0)
|
||||
.group_by(["n_servers", "lam"])
|
||||
.agg(pl.all().mean())
|
||||
.sort(["n_servers", "lam"])
|
||||
)
|
||||
|
||||
pl.Config.set_tbl_cols(20)
|
||||
print(df)
|
||||
print(stats("queue_time"))
|
||||
print(stats("utilization_server_1"))
|
||||
df_queue_time = df.pivot("lam", index="n_servers", values="queue_time").sort(
|
||||
"n_servers"
|
||||
)
|
||||
|
||||
def stats(column):
|
||||
return (
|
||||
df.pivot("lam", index="n_servers", values=column)
|
||||
.sort("n_servers")
|
||||
.with_columns(pl.all().round(2))
|
||||
)
|
||||
|
||||
pl.Config.set_tbl_cols(20)
|
||||
print(df)
|
||||
print(stats("queue_time"))
|
||||
print(stats("utilization_server_1"))
|
||||
|
||||
Reference in New Issue
Block a user